什么是ESD(静电放电)及ESD保护电路的设计--非原创

发新帖

29

主题

30

帖子

88

积分

二级会员

Rank: 3Rank: 3

会员升级进度

积分
88
发表于 2016-7-25 10:56:17 | 显示全部楼层 |阅读模式
分享:
查看: 1423|回复: 3

ESD究竟是什么?静电放电(ESD)定义为,给或者从原先已经有静电(固定的)的电荷(电子不足或过剩)放电(电子流)。电荷在两种条件下是稳定的:
当它“陷入”导电性的但是电气绝缘的物体上,如,有塑料柄的金属的螺丝起子。
当它居留在绝缘表面(如塑料),不能在上面流动时。
可是,如果带有足够高电荷的电气绝缘的导体(螺丝起子)靠近有相反电势的集成电路(IC)时,电荷“跨接”,引起静电放电(ESD)。
保护电路的设计

静电放电(ESD)会给电子产品带来致命的危害,它不仅降低了产品的可靠性,增加了维修成本,而且不符合欧洲共同体规定的工业标准EN61000-4-2,产品就不能够在欧洲销售。所以电子设备制造商通常会在电路设计的初期就考虑ESD保护。本文将讨论ESD保护电路的几种方法。

ESD的危害
ESD基本上可以分为三种类型:一是各种机器引起的ESD,二是家俱移动或设备移动引起的ESD,三是人体接触或设备移动引起的ESD。这三种种ESD对于半导体器件的生产和电子产品的生产都非常重要。电子产品在使用过程最容易受到第三种ESD的损坏,便携式电子产品尤其容易受到人体接触产生的ESD的损坏。在一般情况下ESD会损坏与之相连的接口器件,另一种情况是遭受ESD冲击后的器件可能不会立即损坏,而是性能下降导致产品过早出现故障。

当集成电路(IC)经受ESD时,放电回路的电阻通常都很小,无法限制放电电流。例如将带静电的电缆插到电路接口上时,放电回路的电阻几乎为零,造成高达数十安培的瞬间放电尖峰电流,流入相应的IC管脚。瞬间大电流会严重损伤 IC,局部发热的热量甚至会融化硅片管芯。ESD对IC的损伤还包括内部金属连接被烧断,钝化层受到破坏,晶体管单元被烧坏。ESD还会引起IC的死锁(LATCHUP)。这种效应和CMOS器件内部的类似可控硅的结构单元被激活有关。高电压可激活这些结构,形成大电流信道,一般是从VCC到地。串行接口器件的死锁电流可高达1A。死锁电流会一直保持,直到器件被断电。不过到那时,IC通常早已因过热而烧毁了。ESD冲击后可能存在两个不易被发现的问题,一般用户和IEC测试机构使用传统的“环路反馈方法”和“插入方法”进行测试,通常检测不出这两个问题。

一个问题是RS-232接口电路中接收器对发送器产生交叉串扰。同类产品RS-232接口电路中的ESD保护结构可能对某种波形的ESD或某个ESD冲击电压失效,经过ESD冲击后在接收器输入端和发送器输出端之间形成通路,从而导致接收器对发送器产生交调(图1)。如果RS-232接口电路中有关断电路,那么关断期间经过ESD冲击后更容易产生交调。产生交调后将导致通信失败,而且即使关断工作状态下发送器仍有输出,导致关断失效,使对方RS-232处在接收状态。

另一个问题是RS-232接口电路对电源产生反向驱动。某些RS-232接口电路中的ESD保护结构经过ESD冲击后可能在输入端与供电电源VCC之间形成电流通路(图2),对供电电源产生反向驱动。如果供电电源没有吸入电流的能力(通常来讲电源输出回路里有一个正向二极管),这将导致电源电压VCC上升,从而损坏RS-232接口电路和系统内的其它电路。因为RS-232接口电路输入端的电压在5V到25V之间,使VCC有可能高于9V,超出电源电压的最大范围而烧坏电路。ESD保护电路最有效的保护措施是介质隔离:用绝缘介质把内部电路和外界隔离开。1mm厚的普通塑料如PVC,聚酯或ABS能够保护8KV的ESD。但是实际的介质不可能没有间隙和接缝,所以材料的蠕变和间隙距离非常重要。LCD显示屏,触摸屏等都有很厚的边角(12mm)隔离内部电路。

ESD保护的第二个方法是屏蔽,防止大的ESD电流冲击内部电路。ESD冲击金属屏蔽外壳时,最初几毫秒会比保护地电压高出许多,屏蔽外壳电压会随着ESD电荷的转移而下降,所以最初的几毫秒内会对内部电路产生二次ESD冲击,所以仅仅使用外部屏蔽还不够,内部电路与屏蔽外壳必须共地,或者把内部电路进行介质隔离。电气隔离也是抑制ESD冲击的一种有效方法,PCB板上安装光耦合器或者变压器,虽然不能完全消除ESD的冲击,但是结合介质隔离和屏蔽可以很好的抑制EDS冲击,光耦合器和变压器尤其适合电源部分。信号通路最好的隔离是光纤,无线和红外线方式。

在信号通路上使用的另一种保护方法是在每条信号线上外加阻容组件。串联电阻能够限制尖峰电流,并联到地的电容则能限制瞬间的尖峰电压。这样做的成本低,但是防护能力有限。ESD的破坏力在一定程度上得到抑制,但依然存在。因为阻容组件并不能降低尖峰电压的峰值,仅仅是减少了电压上升的斜率。而且阻容组件还会引起信号失真,以致限制了通讯电缆的长度和通讯速率。外接的电阻/电容也增加了电路板面积。另一种广泛使用的方法是外加电压瞬变抑制器或TransZorb二极管。这种防护非常有效。但仍有一些缺点:外加器件仍会增加电路板面积;防护器件的电容效应会增加信号线的等效电容;成本较高。采用内部集成ESD防护功能的串行接口器件是一种有效的方法。这种器件比普通无防护功能的器件价格要高,但增加的费用比起外加防护二极管的费用要低。内部集成的ESD防护电路不会增加任何输入输出管脚的等效电容,也节省了电路板面积。上海雷卯电子近几年发展了集成ESD防护技术,可以提供全系列的ESD防护串行接口器件,包括与标准器件完全兼容的产品。上海雷卯电子还将同样的技术应用到仿真开关和开关去抖产品中。所有这些器件的ESD防护能力都符合±15kV IEC1000-4-2(气隙放电),±8kV IEC1000-4-2(接触放电),±15kV人体模型(HBM)测试标准。

ESD保护有严格的测试标准:±15kV ESD人体模式测试标准;±8kV ESD IEC1000-4-2接触放电模式测试标准;±15kV ESD IEC 1000-4-2空气间隙放电模式测试标准;±4kV ESDIEC 1000-4-4电气快速瞬变/猝发模式测试标准。其中,IEC1000-4-2与±15kV人体模式测试标准之间的主要差别在于峰值电流;相同电压下,IEC 1000-4-2冲击的吸收电流要比人体模式高出5倍以上。±4kV ESD IEC 1000-4-4电气快速瞬变/猝发模式测试标准是仿真产生开关和继电器的电弧放电结果。雷卯防静电器件可提供±4kV的保护:两倍于IEC 1000-4-4标准的±2kV指标。




收藏 回复

使用道具 举报

3

主题

38

帖子

37

积分

版主

Rank: 7Rank: 7Rank: 7

积分
37
发表于 2016-8-5 21:25:13 | 显示全部楼层
分享:
查看: 1423|回复: 3
很好!
收藏 回复

使用道具 举报

28

主题

40

帖子

644

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
644
发表于 2016-8-7 20:42:32 | 显示全部楼层
分享:
查看: 1423|回复: 3
:)
收藏 回复

使用道具 举报

8

主题

24

帖子

527

积分

四级会员

Rank: 6Rank: 6

会员升级进度

积分
527
发表于 2016-8-9 10:30:03 | 显示全部楼层
分享:
查看: 1423|回复: 3

文章写的非常好,对于TVS的选型,再稍作补充吧,
处理瞬时脉冲对元件损害的最好办法是将瞬时电流从感应元件引开。 TVS二极管在线路板上与被保护线路并联,当瞬时电压超过电路正常工作电压后,TVS二极管便产生雪崩,提供给瞬时电流一个超低电阻通路,其结果是瞬时电流透过二极管被引开,避开被保护元件,并且在电压恢复正常值之前使被保护回路一直保持截止电压。当瞬时脉冲结束以后,TVS二极管自动回覆高阻状态,整个回路进入正常电压。许多元件在承受多次冲击后,其参数及性能会产生退化,而只要工作在限定范围内,二极管将不会产生损坏或退化。从以上过程可以看出,在选择TVS二极管时,必须注意以下几个参数的选择:
1.最小击穿电压VBR和击穿电流IR 。 VBR是TVS最小的击穿电压,在25℃时,低于这个电压TVS是不会产生雪崩的。当TVS流过规定的1mA电流(IR )时,加于TVS两极的电压为其最小击穿电压V BR 。按TVS的VBR与标准值的离散程度,可把VBR分为5%和10%两种。对于5%的VBR来说,V WM =0.85VBR;对于10%的VBR来说,V WM =0.81VBR。为了满足IEC61000-4-2国际标准,TVS二极管必须达到可以处理最小8kV(接触)和15kV(空气)的ESD冲击,部份半导体厂商在自己的产品上使用了更高的抗冲击标准。对于某些有特殊要求的可携设备应用,设计者可以依需要挑选元件。

2.最大反向漏电流ID和额定反向切断电压VWM。 VWM是二极管在正常状态时可承受的电压,此电压应大于或等于被保护电路的正常工作电压,否则二极管会不断截止回路电压;但它又需要尽量与被保护回路的正常工作电压接近,这样才不会在TVS工作以前使整个回路面对过压威胁。当这个额定反向切断电压VWM加于TVS的两极间时它处于反向切断状态,流过它的电流应小于或等于其最大反向漏电流ID。

3.最大钳位电压VC和最大峰值脉冲电流I PP 。当持续时间为20ms的脉冲峰值电流IPP流过TVS时,在其两端出现的最大峰值电压为VC。 V C 、IPP反映了TVS的突波抑制能力。 VC与VBR之比称为钳位因子,一般在1.2~1.4之间。 VC是二极管在截止状态提供的电压,也就是在ESD冲击状态时通过TVS的电压,它不能大于被保护回路的可承受极限电压,否则元件面临被损伤的危险。

4. Pppm额定脉冲功率,这是基于最大截止电压和此时的峰值脉冲电流。对于手持设备,一般来说500W的TVS就足够了。最大峰值脉冲功耗PM是TVS能承受的最大峰值脉冲功耗值。在特定的最大钳位电压下,功耗PM越大,其突波电流的承受能力越大。在特定的功耗PM下,钳位电压VC越低,其突波电流的承受能力越大。另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。而且,TVS所能承受的瞬态脉冲是不重覆的,元件规定的脉冲重覆频率(持续时间与间歇时间之比)为0.01%。如果电路内出现重覆性脉冲,应考虑脉冲功率的累积,有可能损坏TVS。

5.电容器量C。电容器量C是由TVS雪崩结截面决定的,是在特定的1MHz频率下测得的。 C的大小与TVS的电流承受能力成正比,C太大将使讯号衰减。因此,C是数据介面电路选用TVS的重要参数。电容器对于数据/讯号频率越高的回路,二极管的电容器对电路的干扰越大,形成噪音或衰减讯号强度,因此需要根据回路的特性来决定所选元件的电容器范围。高频回路一般选择电容器应尽量小(如LCTVS、低电容器TVS,电容器不大于3pF),而对电容器要求不高的回路电容器选择可高于40pF。
收藏 回复 支持 反对

使用道具 举报

返回列表
您需要登录后才可以回帖 登录 | 立即注册

快速回复 返回顶部 返回列表